

Disruptive Innovation to Enhance Asset Integrity

Deep Offshore Southeast Asia Congress 2019 Jakarta, 3 July 2019

Peter Davies, Director Regional Development Asia Pacific

Carlt No: 15521

Disruptive Technologies

- Diverless solutions for UWILDs.
- Non-intrusive inspection of Ex equipment.
- Digital methods for reducing Pressure System inspection scope.
- Remote inspection of tanks in confined spaces.

Why have we 'landed' on these topics and capabilities?

The HITS JIP, its Members, and Participants led by EM&I

The *Hull Inspection Techniques and Strategy* (HITS), *Joint Industry Programme* (JIP) includes members of all major Class Societies and Operators, whose objectives are to improve hull inspection methods.

Desire to change

- New ideas supported, encouraged and added to by all parties

Clear Direction

- No divers
- No people in confined spaces
- Minimum tank cleaning
- Hull Inspector Competency

Chevror

Today, leading to improved safety and large reductions in cost and POB aligned to the \$50 barrel world...

Disruptive Technologies

- Diverless solutions for UWILDs.
- Non-intrusive inspection of Ex equipment.
- Digital methods for reducing Pressure System inspection scope.
- Remote inspection of tanks in confined spaces.

UWILD Requirements

Currently Class Societies Rules for Floating Offshore Installations mirror their Ship Rules

However:

- 1. FPSOs do not suffer bottom damage;
- 2. Hull hydrodynamic efficiency is not critical;
- 3. Damage to Antifouling cannot be repaired in-situ;
- 4. Many do not have propellers or rudders; and
- 5. FPSOs do not drydock for extended periods of time, if at all.

In lieu of the above:

- IS HULL CLEANING REALLY NECESSARY?
- HOW DO WE MANAGE SHIPSIDE VALVE INTEGRITY?

EM&I Approach - **ODIN**[®]

Reducing and now <u>eliminating requirement for divers</u> and work class ROVs; Class-approved UWILDs; therefore reducing or eliminating OFF-HIRE time to the vessel owner

Asset	2018 – Actual Cost Using ROV	Cost Using Divers (estimated)	Total Saving to Client / day
FPSO in Angola	US\$ 55,000	US\$ 370,000	US\$ 315,000

Internal Valve Isolation and Sea Chest inspection:

- Inspection port welded onto critical piping or sea chest; and
- Specialised cameras inserted into the port, inspect the valve functionality during normal operations.and External Bottom Hull Survey

ODIN® External Bottom Hull Survey Mini-ROV Survey & Hull Cleaning

Use of deck-launched ROV for external bottom hull survey:

- Hull Cleaning [including sea chest inlet grids]; cavitation blaster;
- Thickness Gauging; and
- CP Readings

Cavitation Blaster

UT Probe

CP Probe

ODIN[®] Valve Repairs – ROV or Internal Installed Plugs

Mooring Integrity

Deck-launched, stabilised ROV and calipers:

- Inspection of 30-40 metres with focus on cleaning to detect **pitting and cracking**;
- Development of advanced optical systems underway and to be introduced later this year; and
- Angle Measurement.

New Development for Mooring Chain Inspection

LORIS – under development for 2019 capability

Hydraulically-operated, swimmable chain measuring, does not require ROVs for Inspection

- Descends chain down to sea bed;
- Cleaning using cavitation blasting;
- Measures chain with Laser Scans;
- Advanced Photogrammetry; and
- Measures chain angle through inclinometer.

Disruptive Technologies

- Diverless solutions for UWILDs.
- Non-intrusive inspection of Ex equipment.
- Digital methods for reducing Pressure System inspection scope.
- Remote inspection of tanks in confined spaces.

ExPert Inspections

- Large number of electrical components.
- Criticality-based inspection prioritises but doesn't reduce scope
- Risk-based inspection will reduce scope and cost – target >25%

What's the challenge?

- RBI needs data on degradation mechanisms.
- This is being gathered from industry sources
 Solution:
- Industry-led approach will accelerate success

Disruptive Technologies

- Diverless solutions for UWILDs.
- Non-intrusive inspection of Ex equipment.
- Digital methods for reducing Pressure System inspection scope.
- Remote inspection of tanks in confined spaces.

Pressure System Integrity (PSI)

$\mathsf{ANALYSE}^{\mathsf{TM}}$

Traditional Way

- Objective eliminate LOPC (Loss of Pressure Containment)
- RBI of high and medium-high risk components with ~10% 'Hit Rate' for internal anomalies

Are we wasting money inspecting the other 90%?

New Way

- ANALYSE provides integrity information about:
 - remaining wall thickness; and
 - internal condition of piping
- More efficient way than current industry practice:
 - Statistical RBI using 'big data' analysis; in order to
 - reduce inspection by ~ 50% without loss of assurance
 - This allows spend on real issues such as CUI

Pressure System Integrity (PSI)

Corrosion Under Insultation [CUI]

- RBI identify righ risk failure areas and reduce scope;
- Thermography water ingress;
- RTR Real Time Radiography Screening;
- Digital Radiography;
- Anomaly Management; and
- Reduced requirement for insulation removal as a matter of course

Pressure System Integrity (PSI)

BCT – Backscatter Computed Tomography

- Conventional systems place the object inside the scanner.
- This is not practical for many industrial applications.
- EM&I has developed a new approach which complements radiography for O&G applications....

RBI – Risk Based Inspection

- Reduce and focus inspection scope;
- Inspection plan based on failure mechanisms, identify areas of high risk;
- Engineering recommendation;
- Integrity Reports;
- Asset management information; and
- Management program HIMPS (hull inspection management program system)

Fleet Anomaly Matrix						
	Totals	2	5	77	984	1068
	5	0	0	1	8	9
aly ity	4	1	0	4	31	36
ver	3	0	0	4	65	69
And Se	2	0	0	13	256	269
-	1	1	5	55	624	685
		L	ML	МН	н	Totals
		Consequence				

Figure 1 – Fleet Anomaly Matrix

Risk Level Management

	MONTHLY MANAGEMENT REPORT				
	Noven	nber 2014			
	oct				
Venture - Davit 8 - Structure - IM	Smin crack noted on far side Tap est).	Venture - Davit B - Structure	- 15mm crack noted.		
Venture - Mails1 - Boor	lacing contobion itypical).	Venture - M4861 - Low UT	(2.0mm) on tacing.		
			9		
Venture - Process Liquids - 8/ Thickness 5 4mm fro	PL-0005 = 2" - Remaining Wall a nominal of 11.1mm.	Venture = Diesel Fael = BA/FD-0002 = seld.	Min. 0.6mm noted on sociolist		

Disruptive Technologies

- Digital methods for reducing Pressure System inspection scope.
- Diverless solutions for UWILDs.
- Non-intrusive inspection of Ex equipment.
- Remote inspection of tanks in confined spaces.

NoMan[®] Inspection of Cargo Oil Tanks

Objective

- Reduce personnel entry into confined spaces
- Class and Flag require an '<u>equivalent</u>' inspection
- GVI/CVI
- Distortion / deformation survey

If corrosion evident will require Gauging

NoMan has met this challenge – EM&I carried out ABS and LR approved inspections of COT/WBT without personnel entry

4 x Cargo Oil Tank SurveyNoMan Method3 days out of operation2-man team working outside the tank90% mantime + US\$ 448,000 saving

Disruptive Technology – Laser Scan NoMan®

- Structural Survey
- Dimensional Data
- Deformation (Buckling)
- Surface conditioning

- COT
- FPSO offshore Angola
- February 2019
- No man-entry in to the tank
- Point Cloud Model Baseline for future inspection

- GVI / CVI
- Remote Thickness
 Measurement
- Deformation / Buckling
- Surface Features Corrosion
 + Coating Breakdown

Disruptive Technologies

- Digital methods for reducing Pressure System inspection scope.
- Diverless solutions for UWILDs.
- Non-intrusive inspection of Ex equipment.
- Remote inspection of tanks in confined spaces.

....and finally....

HullGuard[®] ICCP System

- Class-accepted ICCP system designed specifically for Floating Assets.
- ICCP requirements are determined by computer modelling
- The anodes are installed and maintained through an ODIN® access port using a pneumatic installation tool
- It is modular; the number of anodes can be increased as the asset ages and the modelling indicates requirement; and
- First Hullguard ICCP System Project being completed on FPSO Bleo Holm

EMGI

Disruptive Technologies: Outcomes

Operator perspective?

- Improved safety
- Lower cost and budget certainty
- Reduced POB now available for brownfield projects (life extension and production upgrades)
- Better data to optimise maintenance
- Improved asset integrity and reliability
- Compliance

Regulator / Classification Society perspective?

- Improved safety
- Better hull integrity information
- Compliance

...and hence approvals

Disruptive Innovation to Enhance Asset Integrity

Deep Offshore Southeast Asia Congress 2019 Jakarta, 3 July 2019

Questions?

